Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS One ; 19(2): e0290918, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38386656

RESUMO

Telomere length (TL) is an important biomarker of cellular aging, yet its links with health outcomes may be complicated by use of different tissues. We evaluated within- and between-individual variability in TL and quality metrics of DNA across five tissues using a cross-sectional dataset ranging from 8 to 70 years (N = 197). DNA was extracted from all tissue cells using the Gentra Puregene DNA Extraction Kit. Absolute TL (aTL) in kilobase pairs was measured in buccal epithelial cells, saliva, dried blood spots (DBS), buffy coat, and peripheral blood mononuclear cells (PBMCs) using qPCR. aTL significantly shortened with age for all tissues except saliva and buffy coat, although buffy coat was available for a restricted age range (8 to 15 years). aTL did not significantly differ across blood-based tissues (DBS, buffy coat, PBMC), which had significantly longer aTL than buccal cells and saliva. Additionally, aTL was significantly correlated for the majority of tissue pairs, with partial Spearman's correlations controlling for age and sex ranging from ⍴ = 0.18 to 0.51. We also measured quality metrics of DNA including integrity, purity, and quantity of extracted DNA from all tissues and explored whether controlling for DNA metrics improved predictions of aTL. We found significant tissue variation: DNA from blood-based tissues had high DNA integrity, more acceptable A260/280 and A260/230 values, and greater extracted DNA concentrations compared to buccal cells and saliva. Longer aTL was associated with lower DNA integrity, higher extracted DNA concentrations, and higher A260/230, particularly for saliva. Model comparisons suggested that incorporation of quality DNA metrics improves models of TL, although relevant metrics vary by tissue. These findings highlight the merits of using blood-based tissues and suggest that incorporation of quality DNA metrics as control variables in population-based studies can improve TL predictions, especially for more variable tissues like buccal and saliva.


Assuntos
Leucócitos Mononucleares , Mucosa Bucal , Humanos , Criança , Adolescente , Leucócitos Mononucleares/metabolismo , Estudos Transversais , Telômero/genética , DNA/genética , DNA/metabolismo
2.
Brain Behav Immun ; 115: 80-88, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797778

RESUMO

Affective reactivity to stress is a person-level measurement of how well an individual copes with daily stressors. A common method of measuring affective reactivity entails the estimation of within-person differences of either positive or negative affect on days with and without stressors present. Individuals more reactive to common stressors, as evidenced by affective reactivity measurements, have been shown to have increased levels of circulating pro-inflammatory markers. While affective reactivity has previously been associated with inflammatory markers, the upstream mechanistic links underlying these associations are unknown. Using data from the Midlife in the United States (MIDUS) Refresher study (N = 195; 52% female; 84% white), we quantified daily stress processes over 10 days and determined individuals' positive and negative affective reactivities to stressors. We then examined affective reactivity association with peripheral blood mononuclear cell (PBMC) gene expression of the immune-related conserved transcriptional response to adversity. Results indicated that individuals with a greater decrease in positive affect to daily stressors exhibited heightened PBMC JUNB expression after Bonferroni corrections (p-adjusted < 0.05). JUNB encodes a protein that acts as a transcription factor which regulates many aspects of the immune response, including inflammation and cell proliferation. Due to its critical role in the activation of macrophages and maintenance of CD4+ T-cells during inflammation, JUNB may serve as a potential upstream mechanistic target for future studies of the connection between affective reactivity and inflammatory processes. Overall, our findings provide evidence that affective reactivity to stress is associated with levels of immune cell gene expression.


Assuntos
Leucócitos Mononucleares , Estresse Psicológico , Humanos , Feminino , Estados Unidos , Masculino , Estresse Psicológico/genética , Estresse Psicológico/psicologia , Inflamação/genética , Individualidade , Expressão Gênica/genética , Afeto/fisiologia
3.
Ageing Res Rev ; 90: 102031, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567392

RESUMO

Telomere attrition is a proposed hallmark of aging. To evaluate the association of telomere length (TL) with chronological age across the human lifespan, we conducted a systematic review and meta-analysis of 414 study samples comprising 743,019 individuals aged 0-112 years. We examined both cross-sectional and longitudinal data, and evaluated the impact of various biological and methodological factors including sex, health status, tissue types, DNA extraction procedures, and TL measurement methods. The pooled corrected correlation between TL and age from cross-sectional samples was -0.19 (95%CI: -0.22 to -0.15), which weakened with increased chronological age (ß = 0.003, p < 0.001). Z-score change rates of TL across the lifespan showed a gradual decrease in shortening rate until around age 50 and remained at a relatively stable rate towards the elderly period. A greater attrition rate was observed in longitudinal than cross-sectional evaluations. For TL measured in base pairs, the median change rate of TL was -23 bp/year in cross-sectional samples and -38 bp/year in longitudinal samples. Methodological factors including TL measurement methods and tissue types impacted the TL-age correlation, while sex or disease status did not. This meta-analysis revealed the non-linear shortening trend of TL across the human lifespan and provides a reference value for future studies. Results also highlight the importance of methodological considerations when using TL as an aging biomarker.


Assuntos
Longevidade , Encurtamento do Telômero , Idoso , Humanos , Estudos Transversais , Envelhecimento/genética , Telômero
4.
Epigenetics ; 18(1): 2230686, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37393564

RESUMO

Identifying factors that influence the stability of DNA methylation measurements across biological replicates is of critical importance in basic and clinical research. Using a within-person between-group experimental design (n = 31, number of observations = 192), we report the stability of biological replicates over a variety of unique temporal scenarios, both in the absence and presence of acute psychosocial stress, and between individuals who have experienced early life adversity (ELA) and non-exposed individuals. We found that varying time intervals, acute stress, and ELA exposure influenced the stability of repeated DNA methylation measurements. In the absence of acute stress, probes were less stable as time passed; however, stress exerted a stabilizing influence on probes over longer time intervals. Compared to non-exposed individuals, ELA-exposed individuals had significantly lower probe stability immediately following acute stress. Additionally, we found that across all scenarios, probes used in most epigenetic-based algorithms for estimating epigenetic age or immune cell proportions had average or below-average stability, except for the Principal Component and DunedinPACE epigenetic ageing clocks, which were enriched for more stable probes. Finally, using highly stable probes in the absence of stress, we identified multiple probes that were hypomethylated in the presence of acute stress, regardless of ELA status. Two hypomethylated probes are located near the transcription start site of the glutathione-disulfide reductase gene (GSR), which has previously been shown to be an integral part of the stress response to environmental toxins. We discuss implications for future studies concerning the reliability and reproducibility of DNA methylation measurements.Abbreviations: DNAm - DNA methylation, CpG - 5'-cytosine-phosphate-guanine-3,' ICC - Interclass correlation coefficient, ELA - Early-life adversity, PBMCs - Peripheral blood mononuclear cells, mQTL - Methylation quantitative trait loci, TSS - Transcription start site, GSR - Glutathione-disulfide reductase gene, TSST - Trier social stress test, PC - Principal component.


Assuntos
Metilação de DNA , Estresse Psicológico , Fatores de Tempo , Genômica , Envelhecimento , Epigênese Genética
5.
Clin Epigenetics ; 15(1): 33, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855187

RESUMO

BACKGROUND: Immune cell proportions can be used to detect pathophysiological states and are also critical covariates in genomic analyses. The complete blood count (CBC) is the most common method of immune cell proportion estimation, but immune cell proportions can also be estimated using whole-genome DNA methylation (DNAm). Although the concordance of CBC and DNAm estimations has been validated in various adult and clinical populations, less is known about the concordance of existing estimators among stress-exposed individuals. As early life adversity and acute psychosocial stress have both been associated with unique DNAm alterations, the concordance of CBC and DNAm immune cell proportion needs to be validated in various states of stress. RESULTS: We report the correlation and concordance between CBC and DNAm estimates of immune cell proportions using the Illumina EPIC DNAm array within two unique studies: Study 1, a high-risk pediatric cohort of children oversampled for exposure to maltreatment (N = 365, age 8 to 14 years), and Study 2, a sample of young adults who have participated in an acute laboratory stressor with four pre- and post-stress measurements (N = 28, number of observations = 100). Comparing CBC and DNAm proportions across both studies, estimates of neutrophils (r = 0.948, p < 0.001), lymphocytes (r = 0.916, p < 0.001), and eosinophils (r = 0.933, p < 0.001) were highly correlated, while monocyte estimates were moderately correlated (r = 0.766, p < 0.001) and basophil estimates were weakly correlated (r = 0.189, p < 0.001). In Study 1, we observed significant deviations in raw values between the two approaches for some immune cell subtypes; however, the observed differences were not significantly predicted by exposure to child maltreatment. In Study 2, while significant changes in immune cell proportions were observed in response to acute psychosocial stress for both CBC and DNAm estimates, the observed changes were similar for both approaches. CONCLUSIONS: Although significant differences in immune cell proportion estimates between CBC and DNAm exist, as well as stress-induced changes in immune cell proportions, neither child maltreatment nor acute psychosocial stress alters the concordance of CBC and DNAm estimation methods. These results suggest that the agreement between CBC and DNAm estimators of immune cell proportions is robust to exposure to child maltreatment and acute psychosocial stress.


Assuntos
Metilação de DNA , Eosinófilos , Adulto Jovem , Humanos , Criança , Adolescente , Neutrófilos , Monócitos , Genômica
6.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36754567

RESUMO

The dopamine transporter gene, SLC6A3, has received substantial attention in genetic association studies of various phenotypes. Although some variable number tandem repeats (VNTRs) present in SLC6A3 have been tested in genetic association studies, results have not been consistent. VNTRs in SLC6A3 that have not been examined genetically were characterized. The Tandem Repeat Annotation Library was used to characterize the VNTRs of 64 unrelated long-read haplotype-phased SLC6A3 sequences. Sequence similarity of each repeat unit of the five VNTRs is reported, along with the correlations of SNP-SNP, SNP-VNTR, and VNTR-VNTR alleles across the gene. One of these VNTRs is a novel hyper-VNTR (hyVNTR) in intron 8 of SLC6A3, which contains a range of 3.4-133.4 repeat copies and has a consensus sequence length of 38 bp, with 82% G+C content. The 38-base repeat was predicted to form G-quadruplexes in silico and was confirmed by circular dichroism spectroscopy. In addition, this hyVNTR contains multiple putative binding sites for PRDM9, which, in combination with low levels of linkage disequilibrium around the hyVNTR, suggests it might be a recombination hotspot.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Repetições Minissatélites , Alelos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Haplótipos , Íntrons , Repetições Minissatélites/genética , Humanos
7.
Stress ; 25(1): 347-356, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36404775

RESUMO

Early life adversity (ELA) is a risk factor for early onset morbidities and mortality, a relationship that may be driven in part by immune system dysregulation. One mechanism of dysregulation that has yet to be fully examined in the context of ELA is alterations to immune cell dynamics in response to acute stress. Using a within-person between-group experimental design, we investigated stress-induced changes in immune cell populations, and how these changes may be altered in individuals with a history of ELA. Participants were young adults (N = 34, aged 18-25 years, 53% female, 47% with a history of ELA). Complete immune cell counts were measured at four time-points over a 5-hour window across two sessions (Trier Social Stress Test [TSST] vs. no-stress) separated by a week. Across all participants, total white blood cells increased over time (F(3,84)=38.97, p < .001) with a greater increase in response to the TSST compared to the no-stress condition at 240 minutes post-test (b = 0.43±.19; t(179)=2.22, p = .027). This pattern was mirrored by neutrophil counts. Lymphocyte counts were initially depressed by TSST exposure (b =-205±.67; t(184)=-3.07, p = .002) but recovered above baseline. ELA status was associated with higher stress-induced immune cell counts, a difference likely driven by increases in neutrophils (F(1,22)=4.45, p = .046). Overall, these results indicate differential immune cell dynamics in response to acute stress in individuals with a history of ELA. This points to altered immune system functioning in the context of stress, a finding that may be driving increased morbidity and mortality risk for ELA-exposed individuals.


Assuntos
Experiências Adversas da Infância , Humanos , Adulto Jovem , Feminino , Adolescente , Adulto , Masculino , Estresse Psicológico/complicações , Testes Psicológicos , Sistema Imunitário , Fatores de Risco
8.
J Gerontol A Biol Sci Med Sci ; 77(12): 2395-2401, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35965483

RESUMO

Calorie restriction (CR) increases healthy life span and is accompanied by slowing or reversal of aging-associated DNA methylation (DNAm) changes in animal models. In the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIETM) human trial, we evaluated associations of CR and changes in whole-blood DNAm. CALERIETM randomized 220 healthy, nonobese adults in a 2:1 allocation to 2 years of CR or ad libitum (AL) diet. The average CR in the treatment group through 24 months of follow-up was 12%. Whole blood (baseline, 12, and 24 months) DNAm profiles were measured. Epigenome-wide association study (EWAS) analysis tested CR-induced changes from baseline to 12 and 24 months in the n = 197 participants with available DNAm data. CR treatment was not associated with epigenome-wide significant (false discovery rate [FDR] < 0.05) DNAm changes at the individual-CpG-site level. Secondary analysis of sets of CpG sites identified in published EWAS revealed that CR induced DNAm changes opposite to those associated with higher body mass index and cigarette smoking (p < .003 at 12- and 24-month follow-ups). In contrast, CR altered DNAm at chronological-age-associated CpG sites in the direction of older age (p < .003 at 12- and 24-month follow-ups). Although individual CpG site DNAm changes in response to CR were not identified, analyses of sets CpGs identified in prior EWAS revealed CR-induced changes to blood DNAm. Altered CpG sets were enriched for insulin production, glucose tolerance, inflammation, and DNA-binding and DNA-regulation pathways, several of which are known to be modified by CR. DNAm changes may contribute to CR effects on aging.


Assuntos
Restrição Calórica , Epigênese Genética , Humanos , DNA , Metilação de DNA , Epigenoma , Estudo de Associação Genômica Ampla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...